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Why analyze microblogs such as Tweets?

* Validation of socioeconomic theories

* Location-specific marketing

* Timely and place-specific information from “social sensors”
* Prediction of social phenomena



Challenges in microblog analysis

* High number of user-generated tweets; worldwide more than 340
million/day

* High level of noise (i.e. unrelated messages, abbreviations, typos, and
plain nonsense)



Objectives

* Discover dominant microblogging themes within a specific geographic
area

* Find their spatial and thematic distribution patterns



Data

* 300k georeferenced tweets
from greater Seattle area
from August to October 2011

e 13.7k Twitter users




Focus on Tweeting Behavior of the Locals

* Concentrate on tweets of Seattle locals (exclude visitors)

e Count for each unique user ID the days inside the greater Seattle area versus
the days outside within the 60-day period

e 163K of tweets from 2.6k ‘local’ Twitter users



Content Analysis

e List of common topical categories
e 20% of analyzed tweets contain
one or more topic-related keywords
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Spatial Patterns of Tweets: a multi-topical
distribution

* Density-based clustering of tweet
locational origins (source locations)
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Spatial Patterns of Tweets: a bi-topical
distribution
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Spatial Patterns of Tweets: a single topic
distribution - transportation
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Temporal Patterns of All Tweets
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‘emporal Patterns of Tweets on Selected
‘0pICS
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